

THOR Thunderstorm Setup Guide

Contents:

	1. Requirements
	1.1. Supported Operating Systems

	1.2. License Requirements

	1.3. Hardware Requirements

	1.4. Network Connections

	2. Install Thunderstorm Service
	2.1. Get a Service License

	2.2. Download Thunderstorm Installer Script

	2.3. Install Required Packages

	2.4. Run Thunderstorm Installer Script

	2.5. Debugging

	2.6. Silent Installation

	2.7. Uninstall Thunderstorm

	3. Next Steps
	3.1. Configuration

	3.2. Custom Signatures

	3.3. Log Output

	3.4. Thunderstorm API Documentation

	3.5. Test Submission

	3.6. Thunderstorm Collectors

	3.7. Thunderstorm API Client

	3.8. Source Identification

	3.9. Synchronous and Asynchronous Mode

	3.10. Performance Tests

	3.11. SSL/TLS

	4. Maintenance
	4.1. Location of the Components

	4.2. Restart the Service

	4.3. Review the Service Status

	4.4. Update

	4.5. Replace the License

	5. Thunderstorm API
	5.1. openAPI Specs

	6. Links and References

Indices and tables

	Search Page

1. Requirements

1.1. Supported Operating Systems

	RHEL/CentOS 7 / 8

	SuSE SLES 15

	Ubuntu 18 / 20 LTS

	Debian 9 / 10

Since THOR also runs on Windows and macOS operating systems, THOR
Thunderstorm can also be used on one of these platforms but without any
support.

1.2. License Requirements

A valid service license is needed to use THOR Thunderstorm. Please see
Get a Service License for more
information.

1.3. Hardware Requirements

The hardware requirements highly depend on the number of samples per
minute that the service has to process.

In cases in which only a few samples per minute have to be processed,
even a dual core barebone system could be enough. However, in cases in
which thousands of samples per minute should be processed, we recommend
having a high amount of CPU cores, a decent amount of RAM and an SSD
as disk for a faster processing of queued samples.

	Component

	Minimum

	Recommended

	CPU

	2 CPU Cores

	12+ CPU Cores

	Memory

	2 GB of RAM

	16 GB of RAM

	Disk Space (sample queue)

	5 GB Hard Disk Drive

	1 TB Solid State Drive

1.4. Network Connections

For a detailed and up to date list of our update and licensing
servers, please visit https://www.nextron-systems.com/hosts/.

1.4.1. Web UI and Sample Submission

The THOR Thunderstorm service is listening on port 8080/tcp.
This can be changed in the configuration to any other port.
Additionally, you can use HTTPs for the service. Please see
the chapter Configuration.

1.4.2. Update Server

	Remote Server

	Port

	update1.nextron-systems.com

	443/tcp

	update2.nextron-systems.com

	443/tcp

1.4.3. Installer

	Remote Server

	Port

	portal.nextron-systems.com

	443/tcp

	cloud.nextron-systems.com

	443/tcp

2. Install Thunderstorm Service

2.1. Get a Service License

To run THOR in Thunderstorm service mode, you need a license of a
special type named THOR Thunderstorm which allows this mode of operation.

[image: Thunderstorm License Type in Customer Portal]

Thunderstorm License Type in Customer Portal

2.2. Download Thunderstorm Installer Script

Use the Thunderstorm installer script thunderstorm-installer.sh for
Linux systems published in our Github repository:

https://github.com/NextronSystems/nextron-helper-scripts/tree/master/thunderstorm

2.3. Install Required Packages

The Installer script requires the tools wget and unzip. To see
if those tools are installed, run the following command:

user@unix:~$ which wget unzip
/usr/bin/wget
/usr/bin/unzip

If the output is empty or missing one of the tools, you can install
the missing tools on your Linux system with one of the following commands:

user@unix:~$ sudo apt install wget unzip

user@unix:~$ sudo yum install wget unzip

user@unix:~$ sudo zypper install wget unzip

2.4. Run Thunderstorm Installer Script

Make sure that the license file is in the current working directory
together with the thunderstorm-installer.sh and run the following
commands:

user@unix:~$ chmod +x thunderstorm-installer.sh

The script will show you the changes that it's going to make and asks
for a confirmation.

user@unix:~$ sudo ./thunderstorm-installer.sh
[sudo] password for user:
==
 ________ __ __
 /_ __/ / __ _____ ___/ /__ _______ / /____ ______ _
 / / / _ \/ // / _ \/ _ / -_) __(_-</ __/ _ \/ __/ ' \
 /_/ /_//_/_,_/_//_/_,_/__/_/ /___/__/___/_/ /_/_/_/
 v0.4.1

 THOR Thunderstorm Service Installer
 Florian Roth, August 2022
==

The script will make the following changes to your system:
1. Install THOR into /opt/nextron/thunderstorm
2. Drops a base configuration into /etc/thunderstorm
3. Create a log directory /var/log/thunderstorm for log files of the service
4. Create a user named 'thunderstorm' for the new service
5. Create a new service named 'thor-thunderstorm'

You can uninstall THOR Thunderstorm with './thunderstorm-installer uninstall'

Are you ready to install THOR Thunderstorm? (y/N)y
Started Thunderstorm Installer - version 0.4.1
Writing logfile to ./Thunderstorm_Installer_unix_20230105.log
HOSTNAME: unix
IP: 192.168.0.110
OS: BUG_REPORT_URL="https://bugs.debian.org/";HOME_URL="https://www.debian.org/";ID=debian;NAME="Debian GNU/Linux";PRETTY_NAME="Debian GNU/Linux 10 (buster)";SUPPORT_URL="https://www.debian.org/support";VERSION="10 (buster)";VERSION_CODENAME=buster;VERSION_ID="10";
ISSUE: Nextron Systems - ASGARD Management Center - \l
KERNEL: Linux unix 4.19.0-21-amd64 #1 SMP Debian 4.19.249-2 (2022-06-30) x86_64 GNU/Linux
Checking the required utilities ...
All required utilities found.
Searching for license file in current folder ...

2.5. Debugging

2.5.1. Most Common Problems

	Wrong or expired license

	Port 8080 is already in use

2.5.2. Access the Web GUI

Check the Web GUI on: http://127.0.0.1:8080/

2.5.3. Check the Log File

user@unix:~$ sudo tail -100 /var/log/thunderstorm/thunderstorm.log

2.5.4. Start Service Manually

user@unix:~$ sudo /opt/nextron/thunderstorm/thor-linux-64 --thunderstorm -t /etc/thunderstorm/thunderstorm.yml

Warning: in case of a successful service start, the log file will be
created readable for root user only, make sure to delete if afterwards.
An unwritable log file causes the service to fail.

user@unix:~$ sudo rm /var/log/thunderstorm/thunderstorm.log

2.6. Silent Installation

In cases in which you do not want the installer to prompt you for a
confirmation (e.g. Docker installation), use the auto parameter.

user@unix:~$ sudo ./thunderstorm-installer.sh auto

2.7. Uninstall Thunderstorm

You can always uninstall THOR Thunderstorm with

user@unix:~$ sudo ./thunderstorm-installer.sh uninstall

The only files that are left on a system are the log files in
/var/log/thunderstorm.

3. Next Steps

After the installation you can test the service using one of the
Thunderstorm collectors or the Python API client.

3.1. Configuration

The installation script for Linux system installs a service that passes
the parameter -t /etc/thunderstorm/thunderstorm.yml to initialize
the default config stored at that location.

The default configuration file on Linux looks like this:

License path
license-path: /etc/thunderstorm
Write all outputs to the following directory
logfile: /var/log/thunderstorm/thunderstorm.log
appendlog: True
Listen on all possible network interfaces
server-host: 0.0.0.0
server-port: 8080
Pure YARA scanning
pure-yara: False
SSL/TLS
SSL/TLS Server Certificate
#server-cert: /path/to/file
SSL/TLS Server Certificate Private Key
#server-key: /path/to/file
File Submissions
Directory to which the samples get stored in asynchronous mode
server-upload-dir: /tmp/thunderstorm
Permanently store the submitted samples (valied values: none/all/malicious)
server-store-samples: none
Tuning
Server Result Cache
This is the number of cached results from asynchronous submission
available for remote queries (default: 10000)
#server-result-cache-size: 10000

You can use all of THOR's flags in that configuration. Be advised that
you always have to use their long form.

This page lists all of THOR command line flags:

https://github.com/NextronSystems/nextron-helper-scripts/tree/master/thor-help

The following chapters list some of the most useful command line flags
when using THOR Thunderstorm.

3.1.1. Forward Logs to SIEM or Analysis Cockpit

syslog: mysiem.local

Config entry to forward logs to a SIEM

We recommend reading chapter
Syslog or TCP/UDP Output <https://thor-manual.nextron-systems.com/en/latest/usage/output-options.html#syslog-or-tcp-udp-output>
in the THOR User Manual for details on the SYSLOG forwarding flags.
You can find it in the folder /opt/nextron/thunderstorm/docs
after a successful Thunderstorm installation on Linux or in the
"Downloads" section in the customer portal.

3.1.1.1. Keep Samples on the Thunderstorm Server

Keep samples with findings

server-store-samples: malicious

Keep all samples

server-store-samples: all

3.2. Custom Signatures

Since most of the functionalities of THOR are included
in Thunderstorm, you can also include your own custom
signatures. The process is identical to that of a normal THOR
installation. Please see the Custom Signatures chapter [https://thor-manual.nextron-systems.com/en/latest/usage/custom-signatures.html]
in the THOR Manual.

Note

Don't forget to Restart the Service
after placing your custom signatures in the dedicated directory.

3.3. Log Output

The scan results and startup messages can be found in:

user@unix:~$ sudo less /var/log/thunderstorm/thunderstorm.log

You could open another command line window and monitor new messages
with:

user@unix:~$ sudo tail -f /var/log/thunderstorm/thunderstorm.log

3.4. Thunderstorm API Documentation

An API documentation is integrated into the web service.

Simply visit the service URL, e.g.: http://my-server:8080/

[image: Thunderstorm API Documentation]

Thunderstorm API Documentation

3.5. Test Submission

To test the Thunderstorm service, you can create a tiny webshell sample
and submit it to the service using the following commands.

#!/bin/bash
echo "<%eval request(" > test.txt
curl -X POST "http://my-server:8080/api/check?pretty=true" -F "file=@test.txt"

This should produce the following output in the current command line.

[
 {
 "level": "Alert",
 "module": "Filescan",
 "message": "Malware file found",
 "score": 350,
 "context": {
 "ext": ".txt",
 "file": "test.txt",
 "firstBytes": "3c256576616c2072657175657374280a / \\u003c%eval request(\\n",
 "md5": "2481bc6bb2d063522ef8b5d579fd97d7",
 "sha1": "4d40de75d7c8591d2ea59d3a000fb6cf58d97896",
 "sha256": "3b435df5076f6b1df7f2bc97cd86fbf7b479352e8c33960dfc4f1cbbe9b14fa7",
 "size": 16,
 "type": "JSP"
 }
 }
]

Output of test sample submission

Be aware that this has been a "synchronous" submission to the API
endpoint "check". The collection of high amounts of samples in collector
scripts and tools uses the endpoint "checkAsync", which doesn't return a
result to the submitting source.

3.5.1. Test Submission Using the API Documentation

The web GUI running on Port 8080 contains an interactive API
documentation, which you can use to submit a first test sample.

[image: Link to API Documentation on Start Page]

Link to API Documentation on Start Page

Select the API function /api/check, then click "Try it out" and then
select and submit a sample using the enabled form.

[image: Test Sample Submission via API Documentation]

Test Sample Submission via API Documentation

The result appears in a separate text field. Use the "pretty" flag to
get a prettified JSON response.

3.6. Thunderstorm Collectors

You can find a Thunderstorm collector for numerous different operating
systems and architecture in our Github repository. We recommend using the collectors written in Go.

https://github.com/NextronSystems/thunderstorm-collector

You find pre-compiled collector binaries in the release [https://github.com/NextronSystems/thunderstorm-collector/releases]
section of the repository.

See the README [https://github.com/NextronSystems/thunderstorm-collector/blob/master/go/README.md]
on Github for more information.

3.6.1. Run the Collectors

We highly recommend using the config.yml [https://github.com/NextronSystems/thunderstorm-collector/releases/latest/download/config.yml]
as a configuration during the collection. It limits the samples the collector selects
for a submission to relevant file types and sizes. Otherwise the collector would transmit
every possible file, which is usually not recommended.

To retrieve the latest config.yml file, you can use the URL in the following listing
or download it using wget.

user@unix:~$ wget https://github.com/NextronSystems/thunderstorm-collector/releases/latest/download/config.yml

You would then start a collector run using the following command line:

Windows (64 bit):

C:\nextron\thunderstorm>amd64-windows-thunderstorm-collector.exe -t config.yml

Linux (64 bit):

user@unix:~$./amd64-linux-thunderstorm-collector -t config.yml

(Replace the collector binary name with the one you plan to use)

3.6.2. Performance Considerations for the Collection

In a THOR Thunderstorm setup, the system load moves from the end systems
to the Thunderstorm server.

In cases in which you don't use the default configuration file provided
with the collectors (config.yml) and collect all files from an end
system, the Thunderstorm server requires a much higher amount of time to
process the samples.

E.g. A Thunderstorm server with 40 CPU Cores (40 threads) needs 1 hour
to process all 400,000 files sent from a Windows 10 end system. Sending
all files from 200 Windows 10 end systems to a Thunderstorm server with
that specs would take up to 10 days to process all the samples.

As a rule of thumb, when using the hardware recommended in
Hardware Requirements, calculate
with a processing speed of 250 samples per core per minute.

We highly recommend using the default configuration file named
config.yml provided with the collectors. See the README on Github
for more information.

3.7. Thunderstorm API Client

We provide a free and open source command line client written in Python
to communicate with the Thunderstorm service.

https://github.com/NextronSystems/thunderstormAPI

It can be installed with:

user@unix:~$ pip install thunderstormAPI

3.8. Source Identification

The log file generated by THOR Thunderstorm doesn't contain the current
host as hostname in each line. By default, it contains the sending
source's FQDN or IP address if a name cannot be resolved using the
locally configured DNS server.

However, every source can set a "source" value in the request and
overwrite the automatically evaluated hostname. This way users can use
custom values that are evaluated or set on the sending on the end
system.

user@unix:~$ curl -X POST "http://myserver:8080/api/check?source=test" -F "file=@sample.exe"

3.9. Synchronous and Asynchronous Mode

It is also important to mention that THOR Thunderstorm supports two ways
to submit samples, a synchronous and an asynchronous mode.

The default is synchronous submission. In this mode, the sender waits
for the scan result, which can be empty in case of no detection or
contains match elements in cases in which a threat could be identified.

In asynchronous mode, the submitter doesn't wait for the scan result but
always gets a send receipt with an id, which can just be discarded or
used to query the service at a later point in time. This mode is best
for use cases in which the submitter doesn't need to know the scan
results and batch submission should be as fast as possible.

	
	Synchronous

	Asynchronous

	Server API Endpoint

	/api/check

	/api/checkAsync

	ThunderstormAPI Client Parameter

	
	--asyn

	Advantage

	Returns Scan Result

	Faster Submission

	Disadvantage

	Client waits for result of each sample

	No immediate scan result on the client side

In asynchronous mode, the Thunderstorm service keeps the samples in a
queue on disk and processes them one by one as soon as a thread has time
to scan them. The number of files in this queue can be queried at the
status endpoint /api/status and checked on the landing page of the
web GUI.

In environments in which the Thunderstorm service is used to handle
synchronous and asynchronous requests at the same time, it is possible
that all threads are busy processing cached asynchronous samples and not
more synchronous requests are possible.

In this case use the --sync-only-threads flag to reserve a number of
threads for synchronous requests. (e.g. --threads 40 --sync-only-threads 10)

3.10. Performance Tests

Performance tests showed the differences between the two submission
modes.

In Synchronous mode, sample transmission and server processing take
exactly the same time since the client always waits for the scan result.
In asynchronous mode, the sample transmission takes much less time, but
the processing on the server takes a bit longer, since the sever caches
the samples on disk.

	
	Synchronous

	Asynchronous

	Client Transmission

	40 minutes

	18 minutes

	Server Processing

	
	46 minutes

	Total Time

	40 minutes

	46 minutes

3.11. SSL/TLS

We do not recommend the use of SSL/TLS since it impacts the submission
performance. In cases in which you transfer files through networks with
IDS/IPS appliances, the submission in an SSL/TLS protected tunnel
prevents IDS alerts and connection resets by the IPS.

Depending on the average size of the samples, the submission frequency
and the number of different sources that submit samples, the
transmission could take up to twice as much time.

Note

The thunderstormAPI client doesn't verify the server's certificate
by default as in this special case, secrecy isn't important. The main
goal of the SSL/TLS encryption is an obscured method to transport
potentially malicious samples over network segments that could be
monitored by IDS/IPS systems. You can activate certificate checks with
the --verify command line flag or verify parameter in API
library's method respectively.

4. Maintenance

4.1. Location of the Components

THOR Thunderstorm uses several components and paths for the configuration.
Please see the table below for more information:

	Component

	Path

	Config

	/etc/thunderstorm/thunderstorm.yml

	Binaries & Signatures

	/opt/nextron/thunderstorm

	Logs

	/var/log/thunderstorm (you can change that in the configuration)

	Sample Files

	/tmp/thunderstorm (you can change that in the configuration)

4.2. Restart the Service

The following command will restart the THOR Thunderstorm service:

nextron@thunder:~$ sudo systemctl restart thor-thunderstorm.service

Warning

Only restart the service if you are sure that no samples are in the queue.
The queue will get deleted once the service restarts, so only use this if
you are sure that no samples get lost.

4.3. Review the Service Status

To debug potential problems, you can run the following commands and
see what might be the problem.

Check if the service is still running:

nextron@thunder:~$ sudo systemctl status thor-thunderstorm.service
[sudo] password for nextron:
● thor-thunderstorm.service - THOR Thunderstorm Server
 Loaded: loaded (/etc/systemd/system/thor-thunderstorm.service; enabled; vendor preset: enabled)
 Active: active (running) since Wed 2023-01-18 15:28:17 CET; 17h ago
Main PID: 39960 (thor-linux-64)

Check the last entries in the service log for errors

nextron@thunder:~$ tail /var/log/thunderstorm/thunderstorm.log

Check if the service is listening on a port:

nextron@thunder:~$ sudo netstat -anpt | grep thor

4.4. Update

There are two methods on how to update THOR Thunderstorm.

The first method will only update the signatures. This is
the safer option, since the service will not be restarted
automatically.

user@unix:~$ sudo thunderstorm-update
[...]
Mar 21 15:54:21 unix THOR_UTIL: Info: Starting Upgrade Process
Mar 21 15:54:21 unix THOR_UTIL: Info: License file found OWNER: user TYPE: thunderstorm STARTS: 2023/03/21 EXPIRES: 2023/03/24
Mar 21 15:54:21 unix THOR_UTIL: Info: Downloading 'signatures'
Mar 21 15:54:21 unix THOR_UTIL: Info: Downloading from: https://update1.nextron-systems.com/[...]
Mar 21 15:54:21 unix THOR_UTIL: Info: already up-to-date
Successfully updated signatures
Now restart the Thunderstorm service at the next opportunity with: sudo systemctl restart thor-thunderstorm
Note: Use './thunderstorm-update full' to upgrade the binaries and signatures (warning: it will also restart the service automatically)

The second method will also update the signatures and the
THOR Thunderstorm binary. This should only be used when you
are sure that the sample queue is empty and no samples are
being scanned at the moment!

user@unix:~$ sudo thunderstorm-update full
[...]
Mar 21 15:58:47 unix THOR_UTIL: Info: Starting Upgrade Process
Mar 21 15:58:47 unix THOR_UTIL: Info: License file found OWNER: user TYPE: thunderstorm STARTS: 2023/03/21 EXPIRES: 2023/03/24
Mar 21 15:58:47 unix THOR_UTIL: Info: Downloading 'thor-linux'
Mar 21 15:58:47 unix THOR_UTIL: Info: Downloading from: https://update1.nextron-systems.com/[...]
Mar 21 15:58:48 unix THOR_UTIL: Info: already up-to-date
Mar 21 15:58:48 unix THOR_UTIL: Info: THOR 10 detected, also updating signatures ...
Mar 21 15:58:48 unix THOR_UTIL: Info: Starting Upgrade Process
Mar 21 15:58:48 unix THOR_UTIL: Info: License file found OWNER: user TYPE: thunderstorm STARTS: 2023/03/21 EXPIRES: 2023/03/24
Mar 21 15:58:48 unix THOR_UTIL: Info: Downloading 'signatures'
Mar 21 15:58:48 unix THOR_UTIL: Info: Downloading from: https://update1.nextron-systems.com/[...]
Mar 21 15:58:48 unix THOR_UTIL: Info: already up-to-date
Restarting Thunderstorm service ...
Successfully updated THOR and signatures

4.5. Replace the License

In order to add a new license, copy it to the /etc/thunderstorm/ directory.

The THOR Thunderstorm service will automatically pick the first valid license and use it.

Note

If you've added a license with a higher quota limit (samples per hour) and the
old one has not expired, you have to remove the old license, so that the
Thunderstorm service cannot select and use it.

5. Thunderstorm API

In this chapter we will describe the API endpoints
of the THOR Thunderstorm service.

	
POST /api/check

	Check a file with THOR.

	Query Parameters:

	
	pretty (boolean) -- Prettify output JSON

	source (string) -- Specify source for the THOR log

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] -- Returns a Set with messages

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] -- Invalid parameters given - no file, or multiple files, ...

	500 Internal Server Error [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] -- Internal server error

	503 Service Unavailable [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.4] -- Too many simultaneous requests, retry later

	
POST /api/checkAsync

	Check a file with THOR asynchronously

	Query Parameters:

	
	source (string) -- Specify source for the THOR log

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] -- Returns a map containing the sample id

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] -- Invalid parameters given - no file, or multiple files, ...

	500 Internal Server Error [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] -- Internal server error

	
GET /api/getAsyncResults

	Retrieve the results of an asynchronous file check

	Query Parameters:

	
	pretty (boolean) -- Prettify output JSON

	id (integer) -- Sample ID

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] -- Returns a JSON with the current status and, if applicable, the results

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] -- Invalid parameters - no ID specified, or ID invalid or not present in cache

	500 Internal Server Error [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] -- Internal server error

	
GET /api/queueHistory

	Retrieve a history of how many asynchronous requests were queued

	Query Parameters:

	
	pretty (boolean) -- Prettify output JSON

	aggregate (integer) -- Aggregate this many minutes per value (default 1)

	limit (integer) -- Give a history for the last this many minutes (default infinite)

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] -- Returns a JSON Map with each time mapped to the queue length (estimated) from the last time mentioned to that time

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] -- Invalid parameters - aggregate specified is no integer

	
GET /api/sampleHistory

	Retrieve a history of how many samples were scanned

	Query Parameters:

	
	pretty (boolean) -- Prettify output JSON

	aggregate (integer) -- Aggregate this many minutes per value (default 1)

	limit (integer) -- Give a history for the last this many minutes (default infinite)

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] -- Returns a JSON Map with each time mapped to the samples scanned from the last time mentioned to that time

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] -- Invalid parameters - aggregate specified is no integer

	
GET /api/deniedHistory

	Retrieve a history of how many requests were denied

	Query Parameters:

	
	pretty (boolean) -- Prettify output JSON

	aggregate (integer) -- Aggregate this many minutes per value (default 1)

	limit (integer) -- Give a history for the last this many minutes (default infinite)

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] -- Returns a JSON Map with each time mapped to the requests denied from the last time mentioned to that time

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] -- Invalid parameters - aggregate specified is no integer

	
GET /api/info

	Receive static information about the running THOR instance.

	Query Parameters:

	
	pretty (boolean) -- Prettify output JSON

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] -- map with values to running version, rate limitation, ...

	
GET /api/status

	Receive live information about the running THOR instance.

	Query Parameters:

	
	pretty (boolean) -- Prettify output JSON

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] -- map with values to scan times, scanned samples, wait times, ...

5.1. openAPI Specs

Since the plugin used for rendering the API schema
does not consider the request body, please have a
look down below what the request body needs to contains:

{
 "openapi": "3.0.1",
 "info": {
 "description": "This API allows you to send files to THOR to scan them and provides information about the running THOR instance.",
 "title": "THOR Thunderstorm API",
 "version": "10.6.0"
 },
 "paths": {
 "/api/check": {
 "post": {
 "produces": [
 "application/json"
],
 "summary": "Check a file with THOR.",
 "operationId": "check",
 "parameters": [
 {
 "description": "Prettify output JSON",
 "name": "pretty",
 "in": "query",
 "schema": {
 "type": "boolean"
 }
 },
 {
 "description": "Specify source for the THOR log",
 "name": "source",
 "in": "query",
 "schema": {
 "type": "string"
 }
 }
],
 "requestBody": {
 "required": true,
 "content": {
 "multipart/form-data": {
 "schema": {
 "properties": {
 "file": {
 "description": "File to be checked",
 "type": "string",
 "format": "binary"
 }
 },
 "required": [
 "file"
],
 "type": "object"
 }
 }
 }
 },
 "responses": {
 "200": {
 "description": "Returns a Set with messages"
 },
 "400": {
 "description": "Invalid parameters given - no file, or multiple files, ..."
 },
 "500": {
 "description": "Internal server error"
 },
 "503": {
 "description": "Too many simultaneous requests, retry later"
 }
 }
 }
 },
 "/api/checkAsync": {
 "post": {
 "produces": [
 "application/json"
],
 "summary": "Check a file with THOR asynchronously",
 "operationId": "checkAsync",
 "parameters": [
 {
 "description": "Specify source for the THOR log",
 "name": "source",
 "in": "query",
 "schema": {
 "type": "string"
 }
 }
],
 "requestBody": {
 "required": true,
 "content": {
 "multipart/form-data": {
 "schema": {
 "properties": {
 "file": {
 "description": "File to be checked",
 "type": "string",
 "format": "binary"
 }
 },
 "required": [
 "file"
],
 "type": "object"
 }
 }
 }
 },
 "responses": {
 "200": {
 "description": "Returns a map containing the sample id"
 },
 "400": {
 "description": "Invalid parameters given - no file, or multiple files, ..."
 },
 "500": {
 "description": "Internal server error"
 }
 }
 }
 },
 "/api/getAsyncResults": {
 "get": {
 "produces": [
 "application/json"
],
 "summary": "Retrieve the results of an asynchronous file check",
 "operationId": "getAsyncResults",
 "parameters": [
 {
 "description": "Prettify output JSON",
 "name": "pretty",
 "in": "query",
 "schema": {
 "type": "boolean"
 }
 },
 {
 "description": "Sample ID",
 "name": "id",
 "in": "query",
 "schema": {
 "type": "integer"
 }
 }
],
 "responses": {
 "200": {
 "description": "Returns a JSON with the current status and, if applicable, the results"
 },
 "400": {
 "description": "Invalid parameters - no ID specified, or ID invalid or not present in cache"
 },
 "500": {
 "description": "Internal server error"
 }
 }
 }
 },
 "/api/queueHistory": {
 "get": {
 "produces": [
 "application/json"
],
 "summary": "Retrieve a history of how many asynchronous requests were queued",
 "operationId": "queueHistory",
 "parameters": [
 {
 "description": "Prettify output JSON",
 "name": "pretty",
 "in": "query",
 "schema": {
 "type": "boolean"
 }
 },
 {
 "description": "Aggregate this many minutes per value (default 1)",
 "name": "aggregate",
 "in": "query",
 "schema": {
 "type": "integer"
 }
 },
 {
 "description": "Give a history for the last this many minutes (default infinite)",
 "name": "limit",
 "in": "query",
 "schema": {
 "type": "integer"
 }
 }
],
 "responses": {
 "200": {
 "description": "Returns a JSON Map with each time mapped to the queue length (estimated) from the last time mentioned to that time"
 },
 "400": {
 "description": "Invalid parameters - aggregate specified is no integer"
 }
 }
 }
 },
 "/api/sampleHistory": {
 "get": {
 "produces": [
 "application/json"
],
 "summary": "Retrieve a history of how many samples were scanned",
 "operationId": "sampleHistory",
 "parameters": [
 {
 "description": "Prettify output JSON",
 "name": "pretty",
 "in": "query",
 "schema": {
 "type": "boolean"
 }
 },
 {
 "description": "Aggregate this many minutes per value (default 1)",
 "name": "aggregate",
 "in": "query",
 "schema": {
 "type": "integer"
 }
 },
 {
 "description": "Give a history for the last this many minutes (default infinite)",
 "name": "limit",
 "in": "query",
 "schema": {
 "type": "integer"
 }
 }
],
 "responses": {
 "200": {
 "description": "Returns a JSON Map with each time mapped to the samples scanned from the last time mentioned to that time"
 },
 "400": {
 "description": "Invalid parameters - aggregate specified is no integer"
 }
 }
 }
 },
 "/api/deniedHistory": {
 "get": {
 "produces": [
 "application/json"
],
 "summary": "Retrieve a history of how many requests were denied",
 "operationId": "deniedHistory",
 "parameters": [
 {
 "description": "Prettify output JSON",
 "name": "pretty",
 "in": "query",
 "schema": {
 "type": "boolean"
 }
 },
 {
 "description": "Aggregate this many minutes per value (default 1)",
 "name": "aggregate",
 "in": "query",
 "schema": {
 "type": "integer"
 }
 },
 {
 "description": "Give a history for the last this many minutes (default infinite)",
 "name": "limit",
 "in": "query",
 "schema": {
 "type": "integer"
 }
 }
],
 "responses": {
 "200": {
 "description": "Returns a JSON Map with each time mapped to the requests denied from the last time mentioned to that time"
 },
 "400": {
 "description": "Invalid parameters - aggregate specified is no integer"
 }
 }
 }
 },
 "/api/info": {
 "get": {
 "produces": [
 "application/json"
],
 "summary": "Receive static information about the running THOR instance.",
 "operationId": "info",
 "responses": {
 "200": {
 "description": "map with values to running version, rate limitation, ..."
 }
 },
 "parameters": [
 {
 "description": "Prettify output JSON",
 "name": "pretty",
 "in": "query",
 "schema": {
 "type": "boolean"
 }
 }
]
 }
 },
 "/api/status": {
 "get": {
 "produces": [
 "application/json"
],
 "summary": "Receive live information about the running THOR instance.",
 "operationId": "status",
 "responses": {
 "200": {
 "description": "map with values to scan times, scanned samples, wait times, ..."
 }
 },
 "parameters": [
 {
 "description": "Prettify output JSON",
 "name": "pretty",
 "in": "query",
 "schema": {
 "type": "boolean"
 }
 }
]
 }
 }
 }
}

6. Links and References

THOR Website

https://www.nextron-systems.com/thor/

Thunderstorm Collectors

https://github.com/NextronSystems/thunderstorm-collector

Thunderstorm Helper Scripts

https://github.com/NextronSystems/nextron-helper-scripts/tree/master/thunderstorm

Python based thunderstormAPI client module

https://github.com/NextronSystems/thunderstormAPI

https://pypi.org/project/thunderstormAPI

 HTTP Routing Table

 /api

 		 	

 		
 /api	

 	
 	
 GET /api/deniedHistory	
 Retrieve a history of how many requests were denied

 	
 	
 GET /api/getAsyncResults	
 Retrieve the results of an asynchronous file check

 	
 	
 GET /api/info	
 Receive static information about the running THOR instance.

 	
 	
 GET /api/queueHistory	
 Retrieve a history of how many asynchronous requests were queued

 	
 	
 GET /api/sampleHistory	
 Retrieve a history of how many samples were scanned

 	
 	
 GET /api/status	
 Receive live information about the running THOR instance.

 	
 	
 POST /api/check	
 Check a file with THOR.

 	
 	
 POST /api/checkAsync	
 Check a file with THOR asynchronously

Index

 nav.xhtml

 Table of Contents

 		
 THOR Thunderstorm Setup Guide

 		
 Requirements

 		
 Supported Operating Systems

 		
 License Requirements

 		
 Hardware Requirements

 		
 Network Connections

 		
 Web UI and Sample Submission

 		
 Update Server

 		
 Installer

 		
 Install Thunderstorm Service

 		
 Get a Service License

 		
 Download Thunderstorm Installer Script

 		
 Install Required Packages

 		
 Run Thunderstorm Installer Script

 		
 Debugging

 		
 Most Common Problems

 		
 Access the Web GUI

 		
 Check the Log File

 		
 Start Service Manually

 		
 Silent Installation

 		
 Uninstall Thunderstorm

 		
 Next Steps

 		
 Configuration

 		
 Forward Logs to SIEM or Analysis Cockpit

 		
 Custom Signatures

 		
 Log Output

 		
 Thunderstorm API Documentation

 		
 Test Submission

 		
 Test Submission Using the API Documentation

 		
 Thunderstorm Collectors

 		
 Run the Collectors

 		
 Performance Considerations for the Collection

 		
 Thunderstorm API Client

 		
 Source Identification

 		
 Synchronous and Asynchronous Mode

 		
 Performance Tests

 		
 SSL/TLS

 		
 Maintenance

 		
 Location of the Components

 		
 Restart the Service

 		
 Review the Service Status

 		
 Update

 		
 Replace the License

 		
 Thunderstorm API

 		
 openAPI Specs

 		
 Links and References

_images/license_generation.png
Contract Type Expires Used = Total = Left Actions

1

THOR Thunderstorm 20230413 0 1 1

THOR Server & Workstation 20231231 1 50 49

AASGARD Management Center 20231231 1 5 4 [}
THOR Server & Workstation 20230930 1 5 4

"THOR Workstation 20230815 3 20 17

THOR Non-host-based 20231231 0 10 10 1

H
|

_images/thor_thunderstorm_api.png
THOR Thunderstorm Ap| T X1

‘This API allows you to send files to THOR to scan them and provides information about the running THOR instance.

default

POST /api/check Checkafile with THOR.

POST /api/checkAsync Checkafile with THOR asynchronously.

GET /api/getAsyncResults Retrieve the results of an asynchronous file check

g THOR instance.

GET /api/info Recive static information about the runt

GET /api/status Receive live information about the running THOR instance.

_static/thor-thunderstorm-logo.png

_static/minus.png

_static/plus.png

_images/thor_thunderstorm_api_check.png
THOR Thunderstorm Ap| T2 =1

‘This API allows you to send files to THOR to scan them and provides information about the running THOR instance.

default o«

Japi/chack heska o winTHOR /
Parameters Try it out

Name Description

boolean Prettify output JSON
source

string Specify source for the THOR log

urce for the THOR log

Roquestbody multipartfform-data

fille * reauired

o File to be checked

_images/thor_thunderstorm_api_documentation.png
UL] 399521023
Quota Waits 111178
Scanned Samples 7135
Uptime Seconds 79371

API Documentation
API Client Library

_static/file.png

